Site icon Vincenzo Asaro

Il Break Even Point (o punto di pareggio)

Il break even point (o punto di pareggio) copertina

Avete mai sentito parlare del Break Even Point (o punto di pareggio)?

Se volete capire cos’è, a cosa serve, come si calcola, e quali siano i suoi vantaggi e i suoi limiti, questo post fa al caso vostro.
Se invece preferite guardare un video sul break even point potete cliccare sul link o scorrere fino alla fine di questo post.

Vedremo passo dopo passo tutto ciò che riguarda il punto di pareggio.

In fondo alla pagina troverai delle domande e risposte frequenti sul Break Even Point e un’infografica riassuntiva.

Inoltre, c’è anche un link che rimanda ad un esempio pratico di calcolo del punto di pareggio, in cui verificare l’applicazione dei concetti appresi.

Cos’è il Break Even Point

Il Break Even Point (che abbrevieremo in BEP) è un modello a supporto delle decisioni aziendali.

Consente di individuare quante unità di prodotto un’azienda dovrebbe produrre per pareggiare i costi di produzione.

Se l’azienda vende quantità superiori a quella di pareggio, avrà un utile.

Se vende quantità inferiori, avrà delle perdite.

In altre parole, l’uso del Break Even Point (con i suoi limiti, che vedremo successivamente), ci permette di rispondere alla domanda:

Quante unità di prodotto devo produrre per far sì che i costi e i ricavi siano uguali?

Dunque, per definizione:

Il Break Even Point (o punto di pareggio)è il punto in cui i costi totali sono uguali ai ricavi totali.

Alcune note importanti

  1. Dire Break Even Point e dire punto di pareggio è la stessa cosa.
    A molti può sembrare ovvio, ma spesso questa distinzione nel termine usato genera confusione.
  2. In questo post ci occuperemo del BEP per aziende monoprodotto.
    La situazione, ovviamente, sarebbe diversa per aziende multiprodotto.

Rappresentazione grafica del Break Even Point

Graficamente, il BEP è rappresentato dal punto di intersezione tra ricavi totali e costi totali.

Vediamo passo per passo, come si compone il grafico del punto di equilibrio.

1. Disegnare gli assi cartesiani

Gli assi cartesiani, nella rappresentazione del BEP, sono la quantità (asse delle ascisse)e i costi/ricavi (asse delle ordinate).

2. I costi

Nel calcolo del Break Even Point teniamo conto dei costi fissi, di quelli variabili e di quelli totali (che sono la somma dei costi fissi e dei costi variabili).

Vediamoli singolarmente.

a. I costi fissi

I costi fissi, sono quei costi che non variano al variare della quantità prodotta.

Esempi di costi fissi possono essere:

Dunque i costi fissi sono una costante, e in quanto tali vengono rappresentati attraverso una retta orizzontale.

b. I costi variabili

I costi variabili, sono quei costi che variano al variare della quantità prodotta.

Esempi di costi variabili possono essere:

I costi variabili, quindi, sono diversi dai costi fissi. Variano al variare della quantità prodotta.
In particolare aumentano all’aumentare della quantità prodotta.

Di conseguenza, la retta dei costi variabili è una retta inclinata verso l’alto (con pendenza positiva).

La pendenza della retta misura di quanto aumentano i costi all’aumentare della quantità prodotta.

Se la retta è più inclinata verso l’alto, significa che i costi aumentano rapidamente. Mentre se una retta è più “piatta“, significa che i costi aumentano meno rapidamente.

La pendenza dei costi variabili

Abbiamo accennato alla pendenza dei costi variabili.
Se non avete capito bene in concetto, potete visitare questa pagina, in cui si spiega più dettagliatamente da cosa dipenda e cosa rappresenti la pendenza dei costi variabili.

c. I costi totali

I costi totali (che indichiamo con CT) rappresentano la somma di costi fissi e costi variabili.

COSTI TOTALI = COSTI FISSI + COSTI VARIABILI

Quindi, la retta che rappresenta i costi totali sarà identica a quella che rappresenta i costi variabili, MA traslata verso l’alto.
In particolare, la curva dei costi totali è spostata verso l’alto della misura dei costi fissi.

A questo punto, abbiamo finito con la rappresentazione grafica dei costi.
Passiamo alla rappresentazione dei ricavi.

3. I ricavi

I ricavi totali dell’impresa (che rappresentiamo con RT), nel modello, sono rappresentati dalla quantità venduta per il prezzo al quale è stata venduta.

RICAVI TOTALI = PREZZO X QUANTITÀ

Esempio: ipotizziamo di produrre scarpe. Se un paio di scarpe ha un prezzo di 10 €, e ne vendiamo soltanto un paio, il nostro ricavo sarà 10 * 1 = 10 €. Se invece ne vendiamo 5 paia, il nostro ricavo sarà 10 * 5 = 50

Quindi, la pendenza della retta dei ricavi totali (ossia il suo coefficiente angolare)è dato dal prezzo.

Se il prezzo è più alto, la retta sarà più ripida. Se invece il prezzo è più basso, la retta sarà più piatta.

4. Il punto di pareggio (Break Even Point)

Come abbiamo già detto all’inizio, il punto di pareggio (BEP)è il punto di intersezione tra i costi totali e i ricavi totali.

PUNTO DI PAREGGIO:
RICAVI TOTALI = COSTI TOTALI

Graficamente avremo

In corrispondenza del punto di pareggio, l’impresa vende la quantità q*, e ha ricavi (uguali ai costi) pari a €*.

Notiamo due cose:

Da questa osservazione, possiamo dunque introdurre i concetti di area di profitto e area di perdita.

Area di profitto

Sappiamo che l’area al di sotto dei ricavi totali è l’area dei ricavi totali.
A questa, dobbiamo però sottrarre l’area sottesa alla retta dei costi totali.

Ciò che ci rimane è l’area evidenziata in giallo, ovvero l’area di profitto.

In quest’area abbiamo profitto perché i ricavi totali sono maggiori dei costi totali.

Area di perdita

Sempre per lo stesso principio, a sinistra del punto di pareggio, abbiamo l’area di perdita (in cui i ricavi totali sono INFERIORI ai costi totali).

Abbiamo visto il significato grafico del punto di pareggio.
Adesso andiamo a vedere come si determina analiticamente (cioè partendo dai dati ed usando le formule), per poi mettere tutto insieme in un esempio pratico.

Determinazione analitica del Break Even Point

Per trovare il punto di Break Even, dobbiamo conoscere i costi fissi, i costi variabili e il prezzo del prodotto.

Dati per la determinazione del punto di pareggio

Definiamo nel dettaglio analiticamente come sono composte le rette tracciate nei grafici precedenti.

Costi fissi

Come abbiamo detto, non variano al variare della quantità venduta. Sono una costante.
Li indicheremo con CF.

CF costanti!

Costi variabili

Variano al variare della quantità venduta. Li indichiamo con CV.
Indichiamo con cvu il costo variabile unitario (ovvero il costo per ogni unità prodotta).

CV = cvu x q

Costi totali

Sono dati dalla somma tra costi fissi e costi variabili.
Li indichiamo con CT.

CT = CF + CV

Ma sappiamo che CV = cvu x q.
Quindi possiamo scrivere

CT = CF + (cvu x q)

Ricavi totali

Abbiamo già visto che sono dati dal prezzo per il numero di unità prodotte (q).
Li indichiamo con RT.

RT = p x q

Adesso abbiamo tutto quello che ci serve per calcolare il Break Even Point (o punto di pareggio)!

Trovare il punto di pareggio

Sappiamo che il punto di pareggio è il punto in cui i costi totali sono uguali ai ricavi totali.

RT = CT

Sappiamo a cosa equivalgono i ricavi totali e i costi totali. Quindi scriviamo l’uguaglianza esplicitamente, sostituendo a RT e a CT i termini che li caratterizzano.

p x q = CF + (cvu x q)

A questo punto bisogna fare alcune semplici operazioni algebriche (si tratta di una semplicissima equazione di primo grado).
Se alcuni passaggi non sono chiari, potete visitare questo link, che contiene una spiegazione dettagliata delle equazioni di primo grado.

L’incognita è q. Vogliamo sapere quale quantità fa sì che i costi e i ricavi siano uguali.

Siamo quindi arrivati alla quantità di equilibrio.

Da qui, si sostituisce la nostra quantità di pareggio (q*)alle formule del ricavo totale e del costo totale, per trovare il costo e il ricevo di pareggio.

Se la quantità prodotta è maggiore della quantità di pareggio, allora l’azienda avrà profitto (area di profitto vista precedentemente).

Mentre se la quantità prodotta è inferiore alla quantità di pareggio, allora l’azienda sarà in perdita (area di perdita, vista anch’essa precedentemente).

Il margine di contribuzione (MdC)

Quello che abbiamo visto al denominatore della quantità di equilibrio è un indice utilissimo in economia aziendale: il margine di contribuzione.

Margine di Contribuzione (MdC) = p – cvu

Esso rappresenta una misura di profitto parziale. In particolare, indica quanta parte del ricavo derivante da un’unità aggiuntiva venduta serva a coprire una parte di costi fissi.

Un’unità aggiuntiva implica il ricavo p (l’azienda incassa il prezzo di quell’unità di prodotto), ma per produrlo, il costo variabile è cvu. Quindi, la parte rimanente (p – cvu)serve a coprire i costi fissi.

Esempi pratici di calcolo del Break Even Point

Per evitare che questo post diventi troppo lungo, gli esempi pratici possono essere consultati in questa pagina:

Esercizi svolti sul calcolo del punto di pareggio (BEP).

Vantaggi e svantaggi del modello del punto di pareggio

Il modello di cui abbiamo parlato ha indubbiamente alcuni vantaggi (e anche degli svantaggi che vedremo subito dopo).
Volendo riassumere brevemente i vantaggi del modello, possiamo dire che:

Tuttavia, il modello ha numerosi limiti; in particolare:

Domande e risposte sul Break Even Point

Cos’è il Break Even Point?

Il Break Even Point (in italiano Punto di Pareggio)è il punto di incontro tra Ricavi Totali e Costi Totali di un’impresa. Indica la quantità che fa si che i costi totali e i ricavi totali dell’impresa siano uguali.

Tuttavia, quando si parla di Break Even Point ci si riferisce spesso non soltanto al punto di per se, ma a tutto il modello che porta alla determinazione di quel punto.

A cosa serve il Break Even Point?

Il BEP serve a capire quale sia la quantità minima da produrre, e se una data quantità sia compatibile con la struttura dei costi dell’impresa e con il prezzo del prodotto.
Inoltre, serve a dare all’impresa informazioni utili per la determinazione del prezzo di prodotto.
Aiuta ad osservare la struttura dei costi dell’impresa, ed ha tanti altri vantaggi, di cui si parla nel post.

Come si calcola il punto di pareggio?

In estrema sintesi il punto di pareggio si calcola uguagliando i ricavi totali e i costi totali:
RT = CT
Nel post si vede nel dettaglio come individuarlo sia graficamente che analiticamente.

Alla fine dei calcoli il punto di pareggio è quello indicato nell’immagine.

Come si rappresenta graficamente il Break Even Point?

Il break even point si rappresenta graficamente anzitutto disegnando le curve di costo e di ricavo.
Una volta fatto ciò, il punto di pareggio è il punto di intersezione tra la retta del ricavo totale e quella del costo totale.

Cos’è il margine di contribuzione?

Il margine di contribuzione (MdC) è un indice che permette di determinare quanto un’unità venduta contribuisca alla copertura dei costi fissi.

MdC = p – cvu

dove p è il prezzo del prodotto e cvu indicano i costi variabili unitari.

Dove posso trovare egli esercizi svolti sul Break Even Point?

Puoi trovarli in questo post.

Infografica Break Even Point

Video sul break even point

Questo post ti è stato utile?

0 / 5 5 Voti: 5

Your page rank:

Exit mobile version